as: relative intensity $\delta\left({ }^{11} \mathrm{~B}\right)$ (p.p.m.) $\left\{\delta\left({ }^{1} \mathrm{H}\right)\right.$ (p.p.m.) $\left.\left[{ }^{1} J\left({ }^{11} \mathrm{~B}-{ }^{1} \mathrm{H}\right) / \mathrm{Hz}\right]\right\}: \quad 1 \mathrm{BH}+6.0 \quad[+3.55(144)] ; \quad 1 \mathrm{BH}$ $+3.6[+2.64(144)] ; 2 \mathrm{BH} c a-5.3[+2.43$ (not resolved)]; $2 \mathrm{BH} \quad-6 \cdot 1[+2.04(139)] ; \quad 2 \mathrm{BH}$ $-16 \cdot 7[+1 \cdot 55(\geq$ ca 158$)] ; 1$ BH $-21 \cdot 2[+1 \cdot 60(n o t$ resolved)]; $\quad 2 \mathrm{CH} \quad-[+3 \cdot 19(-)] . \quad 1 \mathrm{HCS}_{2}$ $-\left\{+11 \cdot 42\left[{ }^{3} J\left({ }^{103} \mathrm{Rh}-{ }^{1} \mathrm{H}\right)\right.\right.$ and ${ }^{4} J\left({ }^{31} \mathrm{P}^{1} \mathrm{H}\right) 7.3$ and $3 \cdot 8 \mathrm{~Hz}]\}$. These data are entirely consistent with the structure derived from our X-ray study, confirming that the crystal selected for the X-ray analysis was indeed representative of the bulk sample.

The loan of rhodium chemicals from Johnson Matthey plc, England, is gratefully acknowledged. GF thanks NSERC Canada for Grants in Aid of Research. SC thanks the Department of Education of Republic of Ireland for a Senior Studentship. BS, JDK, XLRF thank SERC (UK) for equipment grants.

References

Callahan, K. P. \& Hawthorne, M. F. (1976). Adv. Organomet. Chem. 14, 145-186.

Demidowicz, Z., Teller, R. G. \& Hawthorne, M. F. (1979). J. Chem. Soc. Chem. Commun. pp. 831-832.
Faridoon, Ni Dhubhghaill, O., Spalding, T. R., Ferguson, G., Kaitner, B., Fontaine, X. L. R., Kennedy, J. D. \& Reed, D. (1988). J. Chem. Soc. Dalton Trans. pp. 2739-2745.

Faridoon, Spalding, T. R., Ferguson, G., Kennedy, J. D. \& Fontaine, X. L. R. (1989). J. Chem. Soc. Chem. Commun. pp. 906-908.
Ferguson, G., Faridoon \& Spalding, T. R. (1988). Acta Cryst. C44, 1368-1371.
Frenz, B. A. (1983). Enraf-Nonius Structure Determination Package; SDP Users Guide. Version of 6 January 1983. EnrafNonius, Delft, The Netherlands.
Hardy, G. E., Callahan, K. P., Strouse, C. E. \& Hawthorne, M. F. (1976). Acta Cryst. B32, 264-266.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kalb, W. C., Demidowicz, Z., Speckman, D. M., Knobler, C., Teller, R. G. \& Hawthorne, M. F. (1982). Inorg. Chem. 21, 4027-4036.
Kalb, W. C., Teller, R. G. \& Hawthorne, M. F. (1979). J. Am. Chem. Soc. 101, 5417-5419.
Mingos, D. M. P., Forsyth, M. I. \& Welch, A. J. (1978). J. Chem. Soc. Dalton Trans. pp. 1363-1374.
Zheng, L., Baker, R. T., Knobler, C. B., Walker, J. A. \& Hawthorne, M. F. (1983). Inorg. Chem. 22, 3350-3355.

Acta Cryst. (1990). C46, 1405-1407

Tetraaqua- μ_{4}-(phenylenediaminetetracetato- $\left.O^{1}: O^{2}: O^{3}, O^{4}, N: O^{5}, O^{6}, N^{1}\right)$-dicopper(II) Dihydrate

By C. Ruzz-Pérez, M. L. Rodríguez and F. V. Rodríguez-Romero
Centro de Productos Naturales Orgánicos Antonio González, Universidad de La Laguna-CSIC, Carretera de La Esperanza, 238206 La Laguna, Tenerife, Spain
and A. Mederos, P. Gill and P. Martín-Zarza
Departamento de Química Inorgánica, Universidad de Laguna, 38206 La Laguna, Tenerife, Spain

(Received 12 December 1988; accepted 24 October 1989)

Abstract

Cu}\left(\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{8}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) $571 \cdot 45$, orthorhombic, Pnab, $a=10 \cdot 020$ (1), $b=$ $12.065(1), c=16.589$ (1) $\AA, V=2005 \cdot 3$ (2) $\AA^{3}, D_{x}=$ $1.893 \mathrm{~g} \mathrm{~cm}^{-3}, \quad Z=4, \quad F(000)=1168, \quad \lambda(\mathrm{Cu} K \alpha)=$ $1.54178 \AA, \quad \mu=32.92 \mathrm{~cm}^{-1}$. Room temperature. Final $R=0.06$ for 1549 unique observed reflections. The Cu ions have a highly distorted octahedral coordination geometry, with the p-phenylene-diamine- $N, N, N^{\prime}, N^{\prime}$-tetraacetic (p-phdta) ligand and the $\mathrm{O} W 1$ water molecule at the vertices of the square and the OW2 water molecule and the Oll (through symmetry operation $x+\frac{1}{2},-y, z$) occupying the apical positions. The conformations of the five-

membered chelate rings appear to depend on hydrogen bonding and van der Waals interactions.

Introduction. The behaviour of aromatic diamines as coordinating agents depends on the relative positions of N atoms in the aromatic ring. Thus, for derivatives of o-phenylenediamine, the two vicinal nitrogens may become coordinated to the same metallic cation, in a single sphere of coordination, as has been established for the complexes of o -phenylenediamine- $N, N, N^{\prime}, N^{\prime}$-tetraacetic acid with Co^{11} (McCandlish, Michael, Neal, Lingafelter \& Rose, 1978), Mn^{11} (Nakasuka, Azuma, Katayama, © 1990 International Union of Crystallography

Table 1. Fractional atomic coordinates (\AA) and equivalent isotropic temperature factors $\left(\AA^{2}\right)$ with e.s.d.'s in parentheses

$U_{\text {eq }}$ is defined as one third of the trace of the orthogonalized $U_{i j}$ tensor.				
	x	y	z	$U_{\text {eq }}$
Cul	-0.00480 (9)	0.12933 (7)	$0 \cdot 22359$ (5)	0.0370 (3)
N4	-0.0935 (5)	$0 \cdot 1620$ (4)	$0 \cdot 1129$ (3)	0.020 (1)
O7	0.1614 (5)	0.3686 (4)	0.0966 (3)	0.040 (2)
O8	$0 \cdot 1381$ (4)	$0 \cdot 2214$ (4)	$0 \cdot 1787$ (3)	0.029 (1)
O9	-0.1699 (4)	0.0482 (3)	$0 \cdot 2439$ (3)	0.029 (1)
O11	-0.3851 (5)	0.0453 (4)	0.2061 (3)	0.037 (2)
Cl	$0 \cdot 1021$ (6)	0.0245 (5)	-0.0532 (4)	0.026 (2)
C2	0.0567 (6)	$0 \cdot 1044$ (5)	0.0003 (4)	0.024 (2)
C3	-0.0476 (6)	$0 \cdot 0809$ (5)	0.0546 (3)	0.020 (2)
C5	-0.0471 (6)	0.2771 (5)	0.0964 (4)	0.026 (2)
C6	0.0981 (7)	$0 \cdot 2910$ (5)	$0 \cdot 1255$ (4)	0.029 (2)
C10	-0.2673 (7)	0.0756 (5)	$0 \cdot 1981$ (4)	0.027 (2)
C12	-0.2393 (6)	$0 \cdot 1551$ (5)	$0 \cdot 1298$ (4)	0.026 (2)
OW 1	0.0911 (5)	$0 \cdot 1018$ (5)	0.3279 (3)	0.034 (2)
OW 2	-0.0933 (5)	0.2844 (4)	$0 \cdot 2837$ (3)	0.045 (2)
OW3	0.4070 (5)	0.4477 (5)	$0 \cdot 0618$ (3)	0.052 (2)

Table 2. Bond distances (\AA), bond angles $\left({ }^{\circ}\right)$ and selected torsion angles $\left({ }^{\circ}\right)$ with e.s.d.'s in parentheses

$\mathrm{Cul}-\mathrm{O} 8$	1.959 (4)	$\mathrm{Cul}-\mathrm{O} 9$	1.951 (4)
$\mathrm{Cul}-\mathrm{N} 4$	2.078 (5)	$\mathrm{Cul}-\mathrm{OWl}$	2.007 (5)
$\mathrm{Cul}-\mathrm{OW} 2$	$2 \cdot 298$ (5)	Cul-O11*	2.442 (5)
O8-C6	1.283 (8)	C9-09	1.280 (8)
N4-C3	1.451 (7)	N4-C5	1.490 (8)
N4-C12	1.490 (8)	O7-C6	1.228 (8)
$\mathrm{Ol1}-\mathrm{Cl} 0$	$1 \cdot 243$ (8)	$\mathrm{C} 1-\mathrm{C} 3$	1.408 (8)
$\mathrm{C} 1-\mathrm{C} 2$	1.387 (8)	C5-C6	1.541 (9)
$\mathrm{Cl} 0-\mathrm{Cl} 2$	1.510 (9)		
$\mathrm{OW} 1-\mathrm{Cul}-\mathrm{OW} 2$	$86 \cdot 9$ (2)	N4-Cul-OW2	93.7 (2)
N4-Cul-OW1	$176 \cdot 6$ (2)	$\mathrm{O} 9-\mathrm{Cul}-\mathrm{OW} 2$	$90 \cdot 7$ (2)
$\mathrm{O}-\mathrm{Cul}-\mathrm{OW} 1$	$100 \cdot 0$ (2)	$\mathrm{O} 9-\mathrm{Cu}-\mathrm{N} 4$	83.4 (2)
$\mathrm{O} 8-\mathrm{Cul}-\mathrm{OW} 2$	$89 \cdot 1$ (2)	O8-Cul-OW1	$94 \cdot 1$ (2)
$\mathrm{O} 8-\mathrm{Cu}-\mathrm{N} 4$	$82 \cdot 5$ (2)	$\mathrm{O} 8-\mathrm{Cul}-\mathrm{O} 9$	$165 \cdot 8$ (2)
$\mathrm{OW} 2-\mathrm{Cul}-\mathrm{Ol1}^{*}$	160.7 (2)	$\mathrm{OW} 1-\mathrm{Cul}-\mathrm{Ol1*}$	74.0 (2)
N4-Cul-O11*	$105 \cdot 6$ (2)	O9-Cul-O11*	$90 \cdot 2$ (2)
$\mathrm{O} 8-\mathrm{Cul}-\mathrm{O11*}$	94.9 (2)	$\mathrm{Cu}-\mathrm{O} 8-\mathrm{C} 6$	113.9 (4)
$\mathrm{Cul}-\mathrm{O}-\mathrm{Cl} 0$	$114 \cdot 5$ (4)	$\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl2}$	104.0 (4)
$\mathrm{Cu} 1-\mathrm{N} 4-\mathrm{C} 5$	$101 \cdot 9$ (4)	Cul-N4-C3	109.0 (4)
$\mathrm{C} 5-\mathrm{N} 4-\mathrm{Cl2}$	113.2 (4)	C3-N4-Cl2	113.5 (5)
C3-N4-C5	114.0 (5)	N4-C3-C2	121.7 (5)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{Cl}$	120.9 (5)	N4-C5-C6	109.8 (5)
O7-C6-C5	116.6 (5)	O8-C6-C5	116.1 (5)
O8-C6-07	127.3 (6)	N4-C12-C10	111.0 (5)
$\mathrm{O} 10-\mathrm{Cl} 0-\mathrm{Cl2}$	116.3 (6)	$\mathrm{O} 9-\mathrm{Cl0}-\mathrm{Cl2}$	117.9 (6)
$\mathrm{O} 8-\mathrm{Cul}-\mathrm{N} 4-\mathrm{C} 5$	-34.5 (3)	$\mathrm{O} 9-\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl} 2$	26.3 (3)
$\mathrm{N} 4-\mathrm{Cul}-\mathrm{O} 8-\mathrm{C} 6$	$26 \cdot 2$ (4)	$\mathrm{N} 4-\mathrm{Cu}-\mathrm{O} 9-\mathrm{Cl} 10$	- 19.5 (4)
$\mathrm{Cul}-\mathrm{O} 8-\mathrm{C} 6-\mathrm{C} 5$	-9.8(7)	$\mathrm{Cul}-\mathrm{O}-\mathrm{Cl} 0-\mathrm{Cl} 2$	6.8 (7)
N4-C5-C6-08	-21.3 (7)	N4-C12-C10-09	17.0 (8)
$\mathrm{Cul}-\mathrm{N} 4-\mathrm{C} 5-\mathrm{C} 6$	37.6 (5)	$\mathrm{Cu}-\mathrm{N} 4-\mathrm{Cl} 2-\mathrm{ClO}$	-29.2 (5)

Honda, Tanaka \& Tanaka, 1985), $\mathrm{Zn}^{\text {II }}$ (Azuma, Nakasuka \& Tanaka, 1986) and Cu^{11} (Nakasuka, Azuma \& Tanaka, 1986).

For m - and p-phenylenediamine derivatives, the participation of both $(1,3$ or 1,4$) \mathrm{N}$ atoms in the same sphere of coordination seems to be precluded by the greater distance between them. These ligands can, therefore, coordinate in two spheres and are potentially tridentate. This is in accordance with our studies in aqueous solution of the coordinating
capacity of m - and p-phenylenediamine- $N, N, N, N^{\prime}-$ tetraacetic acid with $\mathrm{Cu}^{\text {II }}$ (Mederos, Felipe, Brito \& Bazdikian, 1986) and with the structure of the title compound, described in this work.

Experimental. The compound was synthesized by the liquid-liquid diffusion reaction between aqueous solutions of $\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and (p-phdta) $\mathrm{Na}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ (2:1 ratio). Green crystals of $\left[\mathrm{Cu}_{2}(p\right.$-phdta)$\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$ were formed directly at the interphase between the two solutions. Crystal used for data collection had dimensions $0.2 \times 0.4 \times 0.7 \mathrm{~mm}$.

Data were collected with a Siemens AED diffractometer using graphite-monochromated $\mathrm{CuK} \alpha$ radiation. Lattice parameters and their e.s.d.'s were derived from the setting angles of 19 reflections with $3<2 \theta<40^{\circ}$. Intensity data for 1615 reflections ($h 0: 12, k 0: 14, l 0: 19 ; 2<2 \theta<128^{\circ}$) were collected in the ω / θ scan mode. 1615 unique, 1548 observed $[I>3 \sigma(I)$]. Two reference reflections (024 , 123) measured every hour showed no significant decrease during the exposure. The intensity data were corrected for Lp and, after isotropic refinement, for absorption (correction range 0.855 to 1.731) with DIFABS (Walker \& Stuart, 1983). The space group was derived from the systematic absences. Structure solved by Patterson method (SHELXS86; Sheldrick, 1986) followed by Fourier synthesis (SHELX76; Sheldrick, 1976). The centre of the benzene ring is at the centre of symmetry. Refinement by full-matrix least squares (XRAY80; Stewart, Machin, Dickinson, Ammon, Heck \& Flack, 1980), anisotropic thermal parameters for all non- H atoms. After this refinement all H atoms, except those of the water molecules, which could not be found, were located from a ΔF map and were included in the refinement with fixed positional parameters and isotropic temperature factors. $\sum\left(F_{o}-F_{c}\right)$ minimized, unit weights. Scattering factors and anomalous-dispersion terms

Fig. 1. Structure of the complex showing atomic numbering scheme. Symmetry codes: ${ }^{*}\left(x+\frac{1}{2},-y, z\right) ;{ }^{* *}\left(-x-\frac{1}{2}, y,-z\right)$.
from International Tables for X-ray Crystallography (1974). Final R was 0.06 . The ratio of maximum least-squares shift to e.s.d. in final refinement cycle was 0.009 , maximum electron density in final difference Fourier synthesis was $0.62 \mathrm{e}^{-3}{ }^{-3}$.

Discussion. Final parameters are shown in Table 1.* The molecular structure of the complex including the atomic numbering scheme is illustrated in Fig. 1. Associated bond parameters for the structure and selected torsion angles are present in Table 2.
The Cu atoms have a highly distorted octahedral coordination geometry with the p-phdta ligand and the $\mathrm{O} W \mathrm{l}$ water molecule at the vertices of the square and the $\mathrm{O} W 2$ water molecule and the O 11 (through the symmetry operation $x+\frac{1}{2},-y, z$) occupying the apical positions. The $\mathrm{Cu} \cdots \mathrm{Oll}\left(x+\frac{1}{2},-y, z\right)$ bond distance is $2 \cdot 442(5) \AA$ and the angle $\mathrm{O}(\mathrm{O} W 2) \cdots$
 -OW 2 and the $\mathrm{Cu}^{11}-\mathrm{O} 11\left(x+\frac{1}{2},-y, z\right)$ axial bonds are, respectively, 0.33 and $0.47 \AA$ longer than the average $\mathrm{Cu}^{\mathrm{II}}-\mathrm{O}$ in-plane bond length, owing to the Jahn-Teller effect. The $\mathrm{Cu}^{11}-\mathrm{OW1}$ bond distance, $2.007 \AA$, trans to N 4 , is shorter than those observed for $\mathrm{Cu}-\mathrm{O} W 2,2 \cdot 298$ (5) \AA. The $\mathrm{Cu}-\mathrm{N}$ bond length, 2.078 (5) \AA, compares well with that observed in methylenetriaminepentaacetate

[^0]cuprate(II) monohydrate (Seccombe, Lee \& Henry, 1975) [average 2.049 (2) \AA]. The $\mathrm{Cu}-\mathrm{O}-\mathrm{C}-\mathrm{C}-\mathrm{N}$ five-membered chelate rings have envelope conformations with the common N atom (N4) out of plane.
The hydrate water molecule ($\mathrm{O} W 3$) participates in intermolecular hydrogen bonds: $\mathrm{O} W 3 \cdots \mathrm{O} 7(x, y, z)$ $2 \cdot 702$ (5) \AA and $\mathrm{O} W 3 \cdots \mathrm{O} W 1\left(x-\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{2}\right)$ $2 \cdot 666(5) \AA$. The $O W 2$ is hydrogen bonded: $\mathrm{O} W 2 \cdots \mathrm{O} 8\left(x+\frac{1}{2},-y+\frac{1}{2},-z+\frac{1}{2}\right) 2 \cdot 764$ (5) \AA.

References

Azuma, S., Nakasuka, N. \& Tanaka, M. (1986). Acta Cryst. C42, 673-677.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
McCandlish, E. F. K., Michael, T. K., Neal, J. A., Lingafelter, E. C. \& Rose, N. J. (1978). Inorg. Chem. 17, 1383-1394.
Mederos, A., Felipe, J. M., Brito, F. \& Bazdikian, K. (1986). J. Coord. Chem. 14, 285-291.
Nakasuka, N., Azuma, S., Katayama, C., Honda, M., Tanaka, J. \& Tanaka, M. (1985). Acta Cryst. C41, 1176-1179.
nakasuka, N., Azuma, S. \& Tanaka, M. (1986). Acta Cryst. C42, 1482-1485.
Seccombe, C., Lee, B. \& Henry, G. M. (1975). Inorg. Chem. 14, 1147-1531.
Sheldrick, G. M. (1976). SHELX76. Program for crystal structure determination. Univ. of Cambridge, England.
Sheldrick, G. M. (1986). SHELXS86. Program for crystal structure solution. Univ. of Göttingen, Federal Republic of Germany.
Stewart, J. M., Machin, P. A., Dickinson, C. W., Ammon, H. L., Heck, H. \& Flack, H. (1980). The XRAY80 system. Computer Science Center, Univ. of Maryland, College Park, Maryland, USA.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1990). C46, 1407-1410

Structure of Tetraphenylphosphonium Tetracyanooxo[\mathbf{N}-o-tolylhydroxylaminato-(2-)-O,Mmolybdate(VI)

By Fouad Ridouane, José Sanchez, Henri Arzoumanian and Marcel Pierrot
Laboratoire de Cristallochimie - ESIPSOI-UA126, Faculté des Sciences, St Jérôme, 13397 Marseille, France

(Received 6 August 1989; accepted 30 November 1989)

Abstract

P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]_{2}\left[\mathrm{Mo}(\mathrm{CN})_{4}(\mathrm{O})\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)\right], M_{r}=\) 1016, monoclinic, $\quad P 2_{1} / n, \quad a=11.332$ (4), $\quad b=$ 13.698 (4), $\quad c=36.06$ (1) $\AA, \quad \beta=92.04$ (5) ${ }^{\circ}, \quad V=$ 5594 (6) $\AA^{3}, Z=4, D_{x}=1 \cdot 21 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=2096$, Mo $K \alpha, \lambda=0.71069 \AA, \mu=3.26 \mathrm{~cm}^{-1}, T=293 \mathrm{~K}$, $R=0.085$ for 1743 unique diffractometer data with I $>3 \sigma(I)$. The seven-coordinate metal structure is compared to diverse oxo-peroxo or oxaziridine Mo complexes. Crystals of the title compound are

composed of $\left[\mathrm{Mo}(\mathrm{CN})_{4}(\mathrm{O})\left(\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}\right)\right]^{2-}$ anions and $\left[\mathrm{P}_{\left.\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{4}\right]^{+} \text {cations, packed without any remarkable }}\right.$ features.

Introduction. Transition-metal-catalyzed reduction of nitric oxide (NO) is important for industrial applications (Ullmanns Encyklopädie der Technischen Chemie, 1981) such as exhaust-gas treatment as well as for understanding enzymatic reactions (Hughes,

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom parameters have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 52759 (14 pp.). Copies may be obtained through The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

